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Abstract 
 
This study estimates cost inefficiency and economies of scale of Slovenian water 
distribution utilities over the 1997-2003 period by employing several different 
stochastic frontier methods. The results indicate that significant cost inefficiencies are 
present in the utilities. An introduction of incentive-based price regulation scheme 
might help resolve this problem. However, the inefficiency scores obtained from 
different cost frontier models are not found to be robust. The levels of inefficiency 
estimates as well as the rankings depend on the econometric specification of the model. 
The established lack of robustness can be at least partly explained by different ability of 
the models to separate unobserved heterogeneity from inefficiency. On the other hand, 
different models produce fairly robust results with respect to estimates of economies of 
output density, customer density and economies of scale. The optimal size of a company 
is found to closely correspond to the sample median. Economies of scale are found in 
small-sized utilities, while large companies exhibit diseconomies of scale. 
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Povzetek 
 
V članku z uporabo različnih metod stohastične meje ocenjujemo stroškovno 
neučinkovitost in ekonomije obsega podjetij za oskrbo s pitno vodo v Sloveniji v 
obdobju od leta 1997 do leta 2003. Na osnovi rezultatov modela je moč sklepati, da je v 
slovenskih podjetjih za oskrbo s pitno vodo prisotna značilna stroškovna neučinkovitost. 
Uvedba nove metode regulacije, ki bi vpeljala spodbude za zniževanje stroškov oziroma 
povečanje produktivnosti, bi tako lahko pripomogla k izboljšanju učinkovitosti 
poslovanja proučevanih podjetij. Nadalje v študiji ugotavljamo, da uporaba različnih 
metod stohastične meje ne vodi do konsistentnih rezultatov z vidika neučinkovitosti 
podjetij. Izbor ekonometrične specifikacije modela vpliva tako na ocenjeno raven 
stroškovne neučinkovitosti podjetij kot tudi na rangiranje podjetij po neučinkovitosti. 
Pri tem pomanjkanje robustnosti rezultatov lahko vsaj do določene mere pojasnimo z 
različno sposobnostjo metod pri ločevanju neopazovane heterogenosti od stroškovne 
neučinkovitosti podjetij. Po drugi strani različne metode vodijo do dokaj robustnih ocen 
ekonomij gostote in ekonomij obsega. Ugotavljamo, da srednje velika podjetja 
razmeroma dobro sovpadajo z optimalnim obsegom poslovanja. V manjših podjetjih so 
prisotne ekonomije obsega, medtem ko v velikih podjetjih za oskrbo s pitno vodo že 
prevladujejo disekonomije obsega.  

 
Klju čne besede: metode stohastične meje, funkcija stroškovne meje, stroškovna 
neučinkovitost, distribucija vode, regulacija cen  

 

 



 3 

1. Introduction 
 
Over the last two decades it has become increasingly important to promote the 
efficiency and improve the performance of natural monopolies operating within network 
industries. In this respect, incentive-based regulation schemes appear to be superior to 
the traditional rate-of-return regulation. The most widely adopted incentive-based 
regulatory schemes in the water distribution sector involve price cap (RPI-X), revenue 
cap, and yardstick regulation models. Most of these regulation schemes used in practice 
are based on benchmarking that is, measuring a company’s productive efficiency 
against a reference performance. In benchmarking applications the regulator is generally 
interested in obtaining a measure of firms’ efficiency in order to reward (or punish) 
companies accordingly. Hence, there is a close link between efficiency measurements 
and incentive-based price regulation. 
 
In the EU water industry context, the two best-practice regulatory examples are the UK 
regulator OFWAT where benchmarking combined with a price-cap is in use (OFWAT, 
1999, 2004) and the Italian Regulation Authority where benchmarking is combined with 
rate-of-return regulation (Massarutto, 1999). In Slovenia, the current price regulation of 
water distribution utilities still closely resembles the traditional rate-of-return 
regulation. Nonetheless, it should be noted that the rules on price regulation recently 
issued by the government (i.e., Rules on Price Determination of Obligatory Local Public 
Utilities for Environment Protection, 2004) envisage the benchmarking of costs and 
quality combined with the rate-of-return regulation. However, the rules have not yet 
been put into practice, nor has been the benchmarking method specified.1  
 
The reliability of efficiency scores is crucial for an effective implementation of 
incentive-based price regulation. Unfortunately, the evidence from empirical studies 
shows that the various benchmarking methods – the parametric approach and the non-
parametric approach – often produce different results with respect to firms’ efficiency 
scores and rankings.2 A possible explanation of this lack of robustness problem relates 
to the difficulty of benchmarking methods in accounting for observable and 
unobservable heterogeneity in environmental and network characteristics across 
companies. This is particularly undesirable if the results are to be used in economic 
policy-making. Despite extensive research carried out in the field of efficiency 
measurement, so far there is no general consensus on which approach (parametric or 
non-parametric) has been found to perform the best.3 
 
In the following paper, parametric frontier benchmarking methods are used to study 
performance of the Slovenian water distribution utilities. Several stochastic frontier 

                                                 
1 To note that in Slovenia a price-cap incentive regulation scheme combined with benchmarking analysis 
has been already applied to the electricity distribution utilities (AERS, 2004). Use of stochastic frontier 
benchmarking in estimating cost inefficiency of Slovenian electricity distribution companies is considered 
in Filippini, Hrovatin and Zorić (2004). 
2 For example, see Bauer et al. (1998), Estache, Rossi and Ruzzier (2004), Jamasb and Pollitt (2003), 
Farsi, Filippini and Greene (2005), Farsi and Filippini (2006). 
3 Both approaches have advocates in the scientific community. The purpose of this paper is not to stress 
the advantages and drawbacks of these two approaches, but to explore if some limitations of conventional 
stochastic frontier models can be overcome if panel data are available. Particularly, the focus of the paper 
is on the effect that unobserved heterogeneity can have on the inefficiency estimates.  
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methods for panel data are used to estimate the cost frontier function for a sample of 
water distribution companies operating in Slovenia between 1997 and 2003. Stochastic 
Frontier Analysis (SFA) was originally introduced by Aigner, Lovell and Schmidt 
(1977) and Meeusen and van den Broeck (1977). In subsequent papers, Pitt and Lee 
(1981) and Schmidt and Sickles (1984) proposed stochastic frontier models for panel 
data. Over the years, many extensions to the originally proposed stochastic frontier 
models have been developed.4 Since water distribution utilities operate in different 
regions with different environmental and network characteristics that are only partially 
observed, it is essential to be able to distinguish between inefficiency and unobserved 
heterogeneity that influences the costs. Until recently, this issue has been neglected in 
the empirical work since the conventional stochastic frontier models are unable to make 
a distinction between these two effects. As a result, unobserved heterogeneity has often 
been confounded with inefficiency. Since this may have serious financial consequences 
for regulated firms, it is crucial to be able to explicitly model cost differences that are 
due to heterogeneity and inefficiency. New developments in the field of stochastic 
frontier analysis, namely true random and true fixed effects models proposed by Greene 
(2005a, b) can help us address this issue. These models extend the previous models by 
adding an additional stochastic error component for the heterogeneity.5  
 
In order to find out whether accounting for unobserved heterogeneity in the model 
significantly influences the results, the cost inefficiency estimates obtained from both 
conventional panel data models and the newly proposed models are compared. We also 
analyze the robustness and reliability of obtained cost inefficiency scores and propose 
how the results from benchmarking analysis could be employed in regulating water 
prices in Slovenia. In addition, economies of scale and density are estimated and the 
optimal size of water distribution utilities is ascertained.  
 
The paper is organized as follows. Section 2 shortly reviews studies estimating the cost 
function of water distribution companies. Section 3 presents the model specification and 
the methodology employed. The data description is provided in Section 4. Section 5 
presents the estimation results and Section 6 concludes the paper.  
 
2. Review of the Relevant Studies  
 
In the literature we can find two types of studies on costs of water distribution 
companies: (i) studies estimating cost function and economies of output density, 
customer density and/or economies of scale, and (ii) studies estimating cost frontier 
function and cost efficiency. In what follows, we provide a short review of the most 
relevant papers, covering sample description, model specification, functional form, 
variables included in the cost function, method of estimation and the obtained results. 
Table 1 summarizes the reviewed studies.  
 

                                                 
4 A good review of different stochastic frontier methods is provided in Kumbhakar and Lovell (2000). 
5 For example, the true random effects model has been already applied to the network industries by Farsi, 
Filippini and Greene (2005) and Farsi, Filippini and Kuenzle (2005, 2006). A similar model but with a 
three-stage estimation procedure has been proposed by Kumbhakar (1991) and Heshmati and Kumbhakar 
(1994).  
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Kim and Clark (1988) examine the multiproduct nature of water supply relative to 
economies of scale and scope. The data used in the study come from a cross-section of 
60 water utilities in the United States for 1973. In estimating the total cost function, two 
outputs are considered: the amounts of water delivered to residential and non-residential 
users. To take into account spatial variation of demand, service distance is included. The 
input prices included in the model are price of labour, price of capital and price of 
energy. Capacity utilization rate, measured by the load factor of a water system, is also 
incorporated in the model. The translog multiproduct total cost function is estimated 
jointly with the cost share equations by using Zellner’s iterative seemingly unrelated 
regression (SUR) method. No significant economies of scale in the utility’s overall 
operation are discovered, where overall economies of scale for the sample mean are 
estimated to be 0.99. Small utilities exhibit rather marked economies of scale (1.33), 
while large utilities exhibit moderate diseconomies of scale (0.88). The utilities on the 
whole are found to enjoy considerable economies of scale for non-residential water 
supply, but suffer from diseconomies in residential supply. The utilities also experience 
economies of scope associated with joint production of the two services. The 
shortcoming of this study is that it does not consider output characteristics in estimating 
the total cost function. Due to excluded variables such as number of customers and area 
size, the obtained results may be biased.  
 
Bhattacharyya et al. (1995) uses a stochastic frontier cost function to specify the costs 
and inefficiency of 221 publicly and privately owned urban water utilities operating in 
the US in 1992. A translog functional form is employed to estimate variable cost 
function. Explanatory variables used are the output (total quantity of water sales), the 
input prices (price of energy, labour and material), the stock of capital and the network 
variables. Network configuration variables include different types of water sources 
used, total quality of water produced and total system loss. The error term is composed 
of a random noise and the cost inefficiency term. Both mean and variance of 
inefficiency are specified in the model as functions of firm-specific factors. The model 
is estimated by the two-step estimation procedure.6 The public water utilities on average 
out-perform the private water companies; the estimated mean cost inefficiencies are 
9.8% and 18.7%, respectively. Again, the estimated inefficiency scores may be biased 
since output characteristics are not included in the model. Another important thing to be 
noticed is that the coefficient of the capital stock has a positive sign. This is quite often 
in the applied literature, although it contradicts the cost theory.7  
 
Antonioli and Filippini (2001) explore economies of scale and density in the Italian 
water industry. The panel consists of 32 water distribution firms over the 1991-1995 
period. The variable cost function is estimated using the OLS and random-effects 
model. Due to the time-invariance of some explanatory variables, the fixed-effects 
model was disregarded. To avoid the multicollinearity problem, a Cobb-Douglas 
functional form is employed. The explanatory variables employed are the amount of 
water distributed, the price of labour, the number of customers, the length of the pipes, 

                                                 
6 This procedure has some serious econometric flaws which results in biased and inconsistent estimators 
(Wang and Schmidt, 2002). 
7 Possible explanations of this theoretically implausible sign are provided in Cowing and Holtmann 
(1983), Guyomard and Vermersch (1989), and Filippini (1996). One of the reasons in this particular case 
may be also poorly specified capital stock variable. 
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percentage of water losses, the number of water wells (as s proxy for the capital stock), 
the treatment dummy variable and the time variable to capture the shift in technology. 
The inclusion of output characteristics in the cost function, allows for the distinction of 
economies of output density, economies of customer density and economies of scale. 
Since the returns to scale are estimated to be 0.95, the results based on the random-
effects model suggest the presence of weak diseconomies of scale. On the contrary, 
there exist economies of output and customer density, the estimates being equal to 1.46 
and 1.16, respectively. Since the random-effects model is not able to control for 
unobserved heterogeneity constant over time, the results may be biased. 
 
Table 1: Summary of the findings from the literature review 
 

Author(s) of 
the paper 

Data sample  Model and 
functional 
form 

Method of 
estimation / 
calculation 

Estimated 
economies of 
scale 

Estimated 
economies of 
density 

Estimated 
cost 
efficiency 

Kim and Clark 
(1988) 

60 US water 
utilities in 
1973 

Translog 
multi-product 
TC function  

SUR method  0.992 (sample 
average) 

/  / 

Bhattacharyya 
et al. (1995) 

221 US water 
utilities from 
1992 survey 

Translog VC 
function 

SFA (SUR 
and two-step 
estimation) 

/ 1.246 (EOD, 
private, SR) 
0.932 (EOD, 
public, SR)1 

0.901 
(average; 
public more 
efficient) 

Antonioli and 
Filippini 
(2001) 

32 Italian 
water utilities 
between 
1991-1995 

Log-log VC 
function 

OLS and RE 
panel data 
model 

0.95 (LR) 1.46 (EOD, LR) 
1.16 (ECD, LR) 

/ 

Garcia and 
Thomas 
(2001) 

55 French 
water utilities 
between 
1995-1997 

Multi-product 
translog VC 
function 

GMM (IV 
method), SUR 
method 

1.002 (sample 
average, LR)  

1.21(EOD, LR) 
0.87 (ECD, 
LR)2 

/ 

 
1 EOD stands for economies of output density, while ECD stands for economies of customer density. SR 
stands for the short run, while LR stands for the long run.  
2 In the short run, EOD = 1.14 and ECD = 1.05.  

 
Garcia and Thomas (2001) examine the cost structure of French municipal water 
utilities. The sample is composed of 55 water utilities from the Bordeaux region for the 
years 1995 to 1997. Generalized Method of Moments (GMM) procedure is used to 
estimate the system of variable cost and input cost shares. Multi-product translog 
variable cost function is employed. The following explanatory variables are used: the 
output variables, factor prices, and technical variables. Technical variables used are the 
number of customers, the number of municipalities supplied (as proxy for area size), 
and several variables representing the existing capital stock: network length, production 
capacity, stocking and the pumping capacity. Estimated economies of scope at the 
variables sample mean are positive (0.237) indicating that there are potential gains in 
production water losses (undesirable output) jointly with water sold to final customers 
(desirable output). Possible explanation for this is that costs associated with network 
repairs and maintenance in order to decrease water losses are higher than costs involved 
in satisfying customer demand by simply increasing water production. Furthermore, 
returns estimates at the sample mean show that in the short run there are economies of 
output density (1.14) as well as economies of customer density (1.05) present. In the 
long run, economies of output density are found (1.21), while there are no longer 
economies of customer density present (0.87). Finally, (the long run) scale economies 
are estimated to be 1.002.  
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The reviewed studies mostly focus on the estimation of the economies of scale and not 
on the measurement of cost inefficiency. With respect to the previous studies in the 
water distribution sector, the contribution of this study is that it notably improves on 
stochastic frontier methods used to estimate cost inefficiency and it explicitly recognises 
the problem of unobserved heterogeneity in measuring the cost and scale inefficiency. 
Moreover, the results of this empirical analysis could be of interest for the authorities 
responsible for regulation of the Slovenian water distribution companies.  
 
3. Model Specification and Methodology  
 
The main purpose of water supply utilities is to produce drinking water with sufficient 
quality from a resource (groundwater or surface water) that may require preliminary 
treatments to make drinking water wholesome and clean, and to distribute water by 
continuously adapting supply to daily demand while preserving water quality during its 
transportation through transmission and distribution network. Water supply utilities 
typically cover all operations from resource extraction to consumer taps. Accordingly, 
water production process consists of the following activities: (i) water extraction (or 
production) from groundwater or surface water and treatment of water, (ii) transfer of 
water through transmission pipelines, (iii) storage of water, (iv) pressurization of water 
pipelines, and (v) distribution of water to final customers through distribution mains; 
includes also quality monitoring and metering (Fabbri and Fraquelli, 2000, and Garcia 
and Thomas, 2001). 
 
The costs of operating a water distribution system are the costs of building and 
maintaining the water system (wells and springs, pumps, treatment facilities, storage 
facilities, transmission and distribution pipelines and other facilities), and of measuring 
and billing water. For the specification of the cost model, we consider a water 
distribution company which uses three inputs, labour, capital and material, to distribute 
a single output to a number of customers within its service area of size. The number of 
customers and the network size can be considered as output characteristic variables. The 
output characteristics are included as explanatory variables to control for the cost 
differences that occur merely due to the (observed) heterogeneity of output. 
 
If it is assumed that firms are in long run static equilibrium with respect to all inputs 
employed and that they minimize total cost, a cost function can be written as: 
 

),,,,,,,,,,( TDDDDASCUPPPQCC USTREATLOSLKML=     (1) 
 
where C represents total cost and Q is the output represented by the total cubic meters 
of water delivered. PL, PM, and PK are the price of labour, the price of material and the 
price of capital, respectively. CU stands for the number of customers served, while AS is 
the size of the service area. DLOSL is a dummy variable of water losses bearing value 1 if 
the firm has low water losses, and 0 value otherwise. DTREAT is a dummy variable for 
water treatment and takes on value 1 if the firm distributes water that has to be treated 
chemically before distribution and 0 value otherwise. The treatment is necessary in a 
situation when, from a medical point of view, the quality of the water does not reach a 
predefined standard and, therefore, it is not suitable for drinking. Water distribution 
utilities can use different water resources: surface water, underground water or mix of 
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both sources. DS represents a dummy variable for the use of surface water only and DU 
is a dummy variable for underground water only. Groundwater usually implies higher 
drilling and pumping costs, whereas treatment costs are usually higher with surface 
water. Finally, T is a time variable, which captures the shift in technology.  
 
Estimation of cost function requires a specification of the functional form. The Cobb-
Douglas is not locally flexible functional form, but is widely used in the literature 
because of its simplicity of application and clearness of interpretation of its parameters. 
The major limit of the Cobb–Douglas functional form is that the estimated values of the 
economies of scale and density do not vary with the size of the firms in the sample but 
are assumed to be constant. Generally, the translog cost function, which is a more 
flexible functional form, offers an appropriate functional form for answering questions 
about economies of scale and density. For that reason, the translog functional form is 
applied.8 However, it should be noted that the translog function is not without 
shortcomings. Since the translog functional form is a local approximation, the 
estimation results are reliable close to the approximation point, while its global 
properties are unsatisfactory. Several studies have noted the problem of fitting a single 
parametric cost function across companies of widely varying size.9 The translog form of 
(1) can be written in the following way:  
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 itTUUSSTREATTREATLOSLLOSL TDDDD εγγγγγ ++++++ ,    (2) 
 
with εit the error term, i = 1, …, N and t = 1, …, Ti. The properties of the cost function 
are that it is concave and linearly homogeneous in input prices, nondecreasing in input 
prices and nondecreasing in output. Notice that normalization of cost and input prices 
by one of the input prices is used to impose linear homogeneity in input prices. Hence, 
the total cost, the price of labour and the price of material are divided by the price of 
capital. Other properties remain to be verified after the estimation of the translog cost 
function is conducted.  
 

                                                 
8 In fact, general translog specification was tested against Cobb-Douglas and translog with hedonic 
specification of the output and it has been found that the general translog as specified in (2) is the 
preferable functional form. 
9 An alternative to deal with this potential problem would be to use the Fourier flexible form, which 
increases the number of parameters to be estimated and thus requires large samples. Due to the relatively 
small sample size this functional form had to be disregarded in our case.  
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The stochastic frontier cost function in (2) is estimated using four different SFA 
methods. Table 2 summarises the models used in the analysis. The differences between 
the various specifications are related to the assumptions imposed on the error term (εit) 
introduced in (2), cost inefficiency and firm-specific effects. Model I is a pooled 
frontier model estimated by maximum likelihood (ML) method as proposed by Aigner, 
Lovell and Schmidt (1977). Since the focus of the SFA is not on estimating the frontier 
cost function but rather on the error term, especially the inefficiency component, let us 
express the cost frontier function in (2) in the following way:  
 

itititit uvcC +++= );(ln * βxα ,       (3) 
 
where C* denotes the normalised costs, x stands for the vector of explanatory variables, 
β is the vector of coefficients and α is the regression constant. The error term (εit) in 
Model I is composed of two parts: a stochastic error (vit), capturing the effect of noise, 
and a one-sided non-negative disturbance capturing the effect of inefficiency (uit ≥ 0). To 
estimate the stochastic cost frontier using the ML method, the following distributional 
assumptions have to be made: ),0(iid~ 2

vit Nv σ , ),0(iid~ 2
uit Nu σ+ , and vit and uit are 

distributed independently of each other and of the regressors. This model is referred to 
as a Normal-Half Normal Model.10 The cost inefficiency is usually expressed in terms 
of cost inefficiency score:  
 

)ˆexp( itF
it

it
it u

C

C
EFF ==         (4) 

 
where Cit is the observed total cost and FitC  is the frontier or minimum cost of the i-th 

firm in time t. Cost inefficiency score of one indicates a firm on the frontier, while non-
frontier firms receive scores above one. Alternatively, the cost efficiency score can be 
calculated as the reciprocal of the cost inefficiency score defined in (4).  
 
Since Model I  does not assume any firm-specific effects, it does not have the ability to 
distinguish between cost inefficiency and unobserved heterogeneity of the firms. We 
therefore turn to the panel data stochastic frontier models and examine how the 
abovementioned shortcoming of the pooled model is addressed. In Model II  we 
consider random-effects (RE) model proposed by Schmidt and Sickles (1984):  
 

itiitoit vcC +++= αα );(ln * βx .       (5) 
 
The model in (5) is estimated by feasible Generalized Least Squares (GLS) method. If 
we allow stronger distributional assumptions on the inefficiency term to hold, we can 
use ML procedure to estimate the RE model, which is done in Model III : 
 

iititoit uvcC +++= );(ln * βxα .       (6) 
 

                                                 
10 Alternative distributional assumptions on ui can as well be made (e.g., exponential, truncated normal, 
and gamma distribution). 
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The latter method was introduced by Pitt and Lee (1981). In both conventional RE 
models cost inefficiency is assumed to be time-invariant, which can be rather limiting 
assumption, particularly in long panels. However, it may be a plausible assumption in 
non-competitive operating environment. From cost inefficiency estimates (αi or ui) cost 
inefficiency scores are also obtained using (4). The fixed-effect (FE) model is not 
considered appropriate since its precision relies on the within variation which is very 
low in our case.11 Also, time-invariant variables which are often present in the network 
industries can not be included in the FE model. Nonetheless, the appeal of the FE model 
as opposed to the GLS estimator is that the former produces unbiased estimates of the 
regression coefficients even if the firm specific effects are correlated with the 
regressors. On the other hand, the FE model produces biased inefficiency estimates due 
to the incidental parameter problem. Based on the above arguments we decided not to 
employ this model.  
 
Table 2: Econometric specification of the models employed 
 

Model Firm-specific 
component  

Random error 

εit 
Inefficiency 

uit 

 
Model I 

Pooled (ML) 

 
None 

ititit uv +=ε  

),0(iid~ 2
uit Nu σ+  

),0(iid~ 2
vit Nv σ  

)( itituE ε  

Model II 
RE (GLS) 

),0(iid~ 2
ασαi  

 

iitit v αε +=  

),0(iid~ 2
εσε it  

{ }iiiiu αα ˆminˆ −=  

Model III 
RE (ML) 

),0(iid~ 2
ui Nu σ+  iitit uv +=ε  

),0(iid~ 2
vit Nv σ  

),0(iid~ 2
uit Nu σ+  

)( iεiuE  

 
Model IV 
TFE (ML) 

 
Fixed (group 
dummies ααααi) 

ititit uv +=ε  

),0(iid~ 2
uit Nu σ+  

),0(iid~ 2
vit Nv σ  

)( itituE ε  

 
The main weakness of Model II and Model III is that they force any time-invariant firm-
specific heterogeneity into the same term that is being used to capture the inefficiency 
(Greene, 2005 b). Consequently, these models do not have the ability to distinguish 
between time-invariant unobserved heterogeneity and cost inefficiency. Any time-
invariant firm-specific effects are treated as inefficiency. By introducing environmental 
and exogenous factors in the model, one can control for observed heterogeneity. 
However, not all relevant data are always available and some factors may even be too 
complex to be properly measurable. This results in unobserved heterogeneity which is 
beyond the firms’ control but may affect their costs significantly. To deal with the 
unobserved heterogeneity, the alternative ‘true’ fixed-effects and ‘true’ random-effects 
models recently proposed by Greene (2005a, b) are considered. Therefore, in Model IV  
we additionally estimate the stochastic frontier cost function by applying true fixed 
effects (TFE) model formulated in the following way:  
 
 itititiit uvcC +++= );(ln βxα        (7) 

                                                 
11 See Cameron and Trivedi (2005) for a discussion on this issue. 
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TFE model treats firm-specific time-invariant fixed effects (αi) and time-varying 
inefficiency (uit) separately and is therefore able to distinguish between the unobserved 
heterogeneity and inefficiency. In this way it tries to overcome some limitations of the 
conventional panel data models.12 The model is estimated by the ‘brute force’ maximum 
likelihood, i.e., by simply creating dummy variables for each firm. The remaining 
shortcoming of the TFE model is the incidental parameters problem.13 Also, time-
invariant firm characteristics can not be included in the model as explanatory variables. 
Nevertheless, these effects are viewed as unobserved heterogeneity and are (at least 
partially) captured by the firm-specific time-invariant term additionally specified by this 
model.  
 
A final note to be made is that newly proposed TFE and TRE do not fully resolve the 
problem of distinguishing between unobserved heterogeneity and inefficiency. The 
problem of these two models is that any time-invariant or persistent component of 
inefficiency is completely absorbed in the firm-specific constant term. As the 
conventional FE and RE models tend to overestimate the inefficiency, it may be the 
case that the TFE and TRE models underestimate it. Thus, the choice of appropriate 
model is also based on the researcher’s belief whether there is some time-invariant 
unobserved heterogeneity in the model or whether the inefficiency does not in fact vary 
over time (Greene, 2005b). 
 
Besides the cost inefficiency, the main objective of this paper is to ascertain the 
presence of economies of scale and density. In the case of network industries, the output 
typically possesses several dimensions. Therefore, besides output distributed, several 
output characteristics such as number of customers, size of service area or length of 
network can influence the costs. According to Caves et al. (1984) and Roberts (1986), 
the inclusion of the number of customers and the size of service area in the cost function 
allows us to distinguish between economies of output density, economies of customer 
density and economies of size. From estimated cost frontier function in (2), economies 
of output density are obtained as follows:  
 

 .
ln

ln
1−










∂
∂=

Q

C
EOD          (8) 

 
Economies of output density measure the reaction of costs to an increase in output, 
holding the number of customers and the size of the service area constant. It also 
follows that the customer density, defined as a ratio of the number of customers to the 
area size, is held constant. The existence of economies of output density (EOD > 1) 

                                                 
12 TRE model was as well applied, but the simulated maximum likelihood estimation method did not 
converge. The true random-effects model (TRE) is specified as: ititiitit uvcC ++++= ωα );(ln βx . The 

difference between this formulation and the TFE model is that ωi is a (time-invariant and firm-specific) 
random effect meant to capture unobserved heterogeneity. A possible explanation why this model did not 
perform well in our case is that the model specification is too rich for our data and, as a result, some of 
the error terms degenerate to zero. 
13 Greene (2005b) finds the bias to be small with respect to the estimates of the regression coefficients. 
For the inefficiency estimates the bias is found to be larger, where the overestimation error of about 20% 
is reported.  
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implies that the average cost of water distribution utility decreases as a physical output 
increases.  
 
Furthermore, if average cost decreases as the output and number of customers are 
proportionally increased then economies of customer density exist (ECD > 1). This 
measure allows us to analyze the existing service area which becomes more densely 
populated. In addition, it is assumed that, on average, new customers consume as much 
as the existing ones. Using (2) economies of customer density are calculated as: 
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Finally, economies of scale measure the reaction of costs when the output, the number 
of customers and the area size increase proportionally. It is assumed that customer 
density and output per customer are held fixed. Economies of scale are obtained from 
(2) in the following way: 
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The economies of scale exist when ES > 1. This measure becomes important when 
analysing whether or not it is beneficial to expand the size of the service area.  
 
4. Data Description 
 
Slovenian water industry is part of the Slovenian communal sector providing public 
services of supply of drinking water, wastewater treatment, solid waste management 
and some other services. The study is based on a panel data set for Slovenian water 
distribution utilities over the 1997-2003 period. Since water supply utilities are under 
the responsibility of local communities, the data on their operation are not collected 
systematically at the national level. Thus, the data had to be gathered via questionnaire 
issued by the Ministry of the Environment and Spatial Planning. In this way we 
obtained data on 52 water supply utilities over the 1997-2003 period. The sample is an 
unbalanced panel consisting of total 332 observations.  
 
Utilities included in the sample supply 153 out of 192 municipalities in Slovenia, that is 
almost 80% of all municipalities. All Slovenian regions are covered by the utilities in 
the sample. Only four companies in the sample are not public utilities, but operate as 
private companies or they have a concession. Utilities differ in terms of size and as well 
in some environmental conditions. Some utilities also provide other services like 
wastewater treatment, solid waste disposal etc. Usually, in smaller municipalities all 
communal activities are joined in a single company, while in larger municipalities 
communal activities are provided separately by several companies. Since 1997, utilities 
are obliged to have separate accounts for different regulated activities. This separation 
of activities is aimed to increase transparency and enable easier monitoring of regulated 
utilities.  
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Descriptive statistics of the variables included in the model are presented in Table 3. 
Total distribution cost (C) equals to operating and capital expenditure of water supply 
activity. The price of labour (PL) is equal to average annual wages, estimated as labour 
expenditures divided by the average number of employees for a given year. The price of 
capital (PK) is calculated as the ratio of capital cost and the capital stock, which is 
approximated by the capacity of pumps measured in litres per second. Capital cost 
consists of depreciation and interests. The price of material (PM) is obtained by dividing 
material cost by the length of distribution network in kilometres. Material cost consists 
of various groups of costs obtained when subtracting capital and labour cost from the 
total company’s cost. Material cost thus includes cost of energy, material and services. 
All input prices and costs were deflated to 2000 constant Slovenian tolars (SIT) using 
the producers’ price index.  
 
Table 3: Descriptive statistics 
 

Variable description Variable Mean Std. Dev. Minimum Maximum 

Total annual cost  
(103 SIT)1  

TOTEX  304,698 538,387 7,208 2,997,534 

Price of labour  
(103 SIT/ employee) 

PL  3,047.7 397.1 2,131.9 4,162.7 

Price of capital  
(103 SIT/ litre per sec.) 

PK  449.4 564.9 13.5 1,484.0 

Price of material  
(103 SIT/ km of network) 

PM  312.0 244.3 46.9 1,412.0 

Water supplied (m3) 
 

Y  2,298,780 3,835,452 106,627 25,507,653 

Number of customers 
 

CUST  7,402.1 7,777.4 515.0 43,272.0 

Size of service area (km2) 
 

AREA  336.9 240.0 57.8 949.1 

Treatment dummy 
 

DTREAT 0.120 0.326 0 1 

Dummy for surface water 
 

DS 0.199 0.400 0 1 

Dummy for underground 
water 

DU 0.355 0.479 0 1 

Dummy for low water 
losses 

DLOSL 0.250 0.434 0 1 

 
1 The average official exchange rate of Slovenian tolar (SIT) in 2000 was 1 EUR = 205.0316 SIT (Bank 
of Slovenia, 2001). 
 
The output (Q) is measured as the amount of water supplied to the final customers 
expressed in cubic metres. The number of final customers (CU) is the sum of household 
and non-household customers. The size of service area (AS) is expressed in square 
kilometres. Water losses are the difference between the amount of water pumped into 
the distribution system and the amount of water supplied to the customers. The share of 
water losses is calculated as the ratio of water losses and the water pumped into the 
pipes. It is considered that the utility has low water losses if the share of water losses 
does not exceed the first quartile which equals to 19% of water losses. The variable is 
included in the model as a dummy variable DLOSL with value 1 if the firm has low water 
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losses, and 0 otherwise.14 In some cases water needs treatment in order to be suitable for 
drinking. A dummy variable DTREAT takes on value 1 if the firm distributes water that has 
to be treated chemically before distribution and 0 value otherwise. Only demanding 
chemical treatment is taken into the account; simple chemical treatment (disinfection 
and chlorination) is not considered. Since water distribution utilities can use surface 
water, underground water or mix of both resources, a type of water resource is as well 
included in the model. DS is a dummy variable for the use of surface water only and DU 
is a dummy variable for the use of underground water only.  
 
5. Parameter Estimates of Cost Frontier Function  
 
The estimation results of the translog cost frontier function of Slovenian water 
distribution utilities obtained by the four different models are given in Table 4.15 The 
expansion point of the translog stochastic frontier cost function specified in (2) is 
chosen to be the sample median. Since total cost and all the continuous explanatory 
variables are in logarithms, the estimated first-order coefficients can be interpreted as 
cost elasticities evaluated at the sample median. As expected, results show that input 
prices, output and output characteristics are positive and highly significant across 
models.  
 
The results of the four models show that the output coefficient (bQ) is positive and 
highly significant in all models. It suggests that, on average, a one percent increase in 
the amount of water supplied will increase the total cost of Slovenian water distribution 
utilities by 0.26% to 0.33%, depending on the model considered. Similarly, the 
coefficients of the two output characteristics, the number of customers (bCU) and the size 
of service area (bAS), are found to be significantly positive. The coefficient of the 
number of customers varies between 0.45 and 0.50, while the coefficient of the service 
area size is found to be between 0.16 and 0.22.  
 
The cost frontier function is non-decreasing in input prices since both the labour price 
coefficient as well as the material price coefficient are positive and highly significant. 
The concavity in input prices is confirmed at the sample median for Models I and IV. In 
Models II and III, the respective coefficients are not found to be significant. It should be 
noted that theoretical cost function satisfying all the required properties can only be 
derived under the cost minimising behaviour. If this is not the case, it is likely that some 
properties of the cost function, for example concavity in input prices, will not be 
satisfied. Therefore, in the presence of inefficiencies in the model there is no reason to 
assume that by employing the cost function, one can truly arrive at the economic 
representation of the production possibility set. In such cases the estimated empirical 
cost function cannot be viewed as the ‘true’ cost function but rather as the ‘behavioural’ 
cost function (Evans, 1971, and Breyer, 1987). 
 
 
 

                                                 
14 In order to avoid a multicollinearity problem we did not include a continuous variable for water losses 
in the model. The correlation between water losses, output, number of customers and size of the service 
area is quite high.  
15 The models are estimated using NLogit 3.0.  
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Table 4: Estimation results of the cost frontier function  
 

Coefficient 
 

Model I 
Pooled (ML) 

Model II 
RE (GLS) 

Model III 
RE (ML) 

Model IV 
TFE (ML) 

ln a  11.570**** 
(0.036) 

11.856**** 
(0.054) 

11.424**** 
(0.079) - 

cPL 0.579**** 
(0.024) 

0.405**** 
(0.024) 

0.401**** 
(0.041) 

0.521**** 
(0.030) 

cPM 0.180**** 
(0.022) 

0.341**** 
(0.020) 

0.339**** 
(0.042) 

0.193**** 
(0.028) 

bQ 0.329**** 
(0.059) 

0.289**** 
(0.063) 

0.290*** 
(0.091) 

0.258**** 
(0.069) 

bCU 0.449**** 
(0.059) 

0.471**** 
(0.071) 

0.454**** 
(0.095) 

0.503**** 
(0.072) 

bAS 0.193**** 
(0.023) 

0.201**** 
(0.040) 

0.218*** 
(0.074) 

0.158**** 
(0.032) 

cPL,PL -0.097** 
(0.047) 

0.034 
(0.037) 

0.015 
(0.069) 

-0.178*** 
(0.060) 

cPM,PM -0.052 
(0.036) 

0.014 
(0.028) 

-0.005 
(0.044) 

-0.109** 
(0.046) 

cPL,PM 0.144**** 
(0.037) 

0.023 
(0.029) 

0.040 
(0.050) 

0.222**** 
(0.050) 

bQ,Q 0.587**** 
(0.152) 

0.330** 
(0.124) 

0.248 
(0.239) 

0.673**** 
(0.149) 

bCU,CU 0.122 
(0.226) 

-0.029 
(0.189) 

-0.094 
(0.281) 

-0.184 
(0.252) 

bAS,AS 0.195**** 
(0.055) 

0.086 
(0.116) 

0.026 
(0.163) 

0.287**** 
(0.078) 

bQ,CU -0.432** 
(0.177) 

-0.209 
(0.139) 

-0.149 
(0.228) 

-0.350* 
(0.183) 

bQ,AS 0.022 
(0.076) 

-0.032 
(0.088) 

-0.031 
(0.121) 

-0.103 
(0.089) 

bCU,AS 0.155** 
(0.078) 

0.127 
(0.092) 

0.185 
(0.174) 

0.250*** 
(0.093) 

dPL,Q 0.096 
(0.080) 

0.104 
(0.063) 

0.117 
(0.118) 

0.089 
(0.089) 

dPL,CU -0.056 
(0.078) 

-0.137** 
(0.066) 

-0.157 
(0.119) 

-0.060 
(0.093) 

dPL,AS -0.065* 
(0.037) 

0.031 
(0.039) 

0.028 
(0.076) 

-0.105** 
(0.048) 

dPM,Q -0.109* 
(0.059) 

-0.101** 
(0.050) 

-0.092 
(0.069) 

-0.148** 
(0.069) 

dPM,CU 0.094 
(0.065) 

0.126** 
(0.051) 

0.135** 
(0.067) 

0.093 
(0.079) 

dPM,AS 0.046 
(0.035) 

-0.055* 
(0.030) 

-0.081 
(0.081) 

0.124*** 
(0.044) 

hT 0.002 
(0.005) 

-0.002 
(0.003) 

-0.002 
(0.004) 

-0.008* 
(0.004) 

gS 0.202**** 
(0.029) 

0.097 
(0.069) 

0.216* 
(0.116) - 

gU 0.090**** 
(0.026) 

0.040 
(0.059) 

0.219 
(0.201) 

- 

gTREAT 0.120*** 
(0.037) 

0.212*** 
(0.080) 

0.287* 
(0.164) - 

gLOSL -0.156**** 
(0.027) 

-0.037* 
(0.020) 

-0.020 
(0.022) 

- 

 
Notes: standard errors in brackets;  
* – significant at 10%, **  – significant at 5%, ***  – significant at 1%, ****  – significant at 
0.1% (two-sided significance level) 
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Table 4: Continuation  
 

Coefficient 
 

Model I 
Pooled (ML) 

Model II 
RE (GLS) 

Model III 
RE (ML) 

Model IV 
TFE (ML) 

σ v  (sv) 0.0976 0.0712 0.0698 0.1542 

σ u  (su) 0.2502 0.1714 0.4282 0.2611 
2/122 )( vu σσσ +=  0.2686****  - 0.4338****  0.3032****  

λ = σ 
u /σ 

v 

 
2.564****  
(0.3397) - 

6.137**  
(3.0475) 

1.693****  
(0.2079) 

 
Notes: standard errors in brackets;  
* – significant at 10%, **  – significant at 5%, ***  – significant at 1%, ****  – significant at 
0.1% (two-sided significance level) 

 
Time does not seem to have a significant influence on the costs of Slovenian water 
distribution utilities. By assuming a one-sided hypothesis, only in Model IV are costs 
found to be significantly decreasing over the analysed period. Based on the results it 
cannot be concluded that total cost has considerably changed over time. This is largely 
consistent with non-competitive environment in which the public utilities operate. Also, 
price regulation is not designed in a way that would stimulate utilities to decrease their 
costs and operate more efficiently.  
 
Table 5 provides descriptive statistics on the cost inefficiency estimates of Slovenian 
water distribution utilities obtained from Models I – IV. We can observe some notable 
differences in the estimated cost inefficiency levels. By employing the pooled stochastic 
frontier model (Model I), the average cost inefficiency is estimated to be 22.5%. On the 
contrary, in the case of the RE panel data stochastic frontier models, the estimated 
average cost inefficiencies are quite high; the inefficiency amounts to 66.3% in the RE 
GLS model (Model II) and 50% in the RE ML model (Model III). The relatively high 
inefficiency levels of the RE models might to some extent be attributed to unobserved 
firm-specific time-invariant effects. The RE models treat these effects as time-invariant 
cost inefficiency so the cost inefficiency estimates obtained by these models are most 
likely overestimated. This is not the case of the pooled model since each observation is 
treated as independent and, accordingly, the inefficiency is considered to vary across 
utilities and over time. Further, in the RE models the median values of cost inefficiency 
are considerably lower compared to the means, indicating that the means are influenced 
by the extreme values. Finally, the average cost inefficiency based on the true fixed 
effects model (Model IV) is estimated to be 19.1%. Lower inefficiency levels in 
comparison to the other models are expected since the true fixed effects model is able to 
distinguish unobserved firm-specific fixed effects from inefficiency and is thus able to 
treat the two effects separately.  
 
What remains to be tested is whether the models provide similar rankings of the utilities 
with respect to the cost inefficiency scores. From the regulatory point of view, this issue 
is considered to be vital. Table 6 provides the pair-wise Pearson correlation coefficients 
between the cost inefficiency estimates.16 We can observe that, with the exception of 
Model IV, the correlation between the inefficiency scores resulting from different 
                                                 
16 The conclusions based on the rank correlation between the inefficiency scores from different models 
(Spearman correlation coefficients) are very similar to those found in Table 6. 
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models is significant, positive and, overall, not particularly high. The correlation is 
especially high between the inefficiency scores from the two RE panel data models. The 
correlation between inefficiency scores from Model IV and Model I is significant but 
quite moderate, whereas the correlation between Model IV and Models II and III is not 
significantly different from zero.17 Again, the reason may be found in the fact that the 
TFE model treats firm-specific fixed effects (αi) separately from the inefficiency (uit). 
As a result, some effects that might be attributed to inefficiency by other models are 
here captured by the firm-specific effects and thus attributed to firm heterogeneity rather 
than inefficiency. This may be a plausible reason for the no correlation with the two RE 
panel data models.  
 
Table 5: Estimated cost inefficiency scores 
 

Inefficiency 
score (EFFi) 

Model I 
Pooled (ML) 

Model II 
RE (GLS) 

Model III 
RE (ML) 

Model IV 
TFE (ML) 

Mean 1.225 1.663 1.500 1.191 

Median 1.181 1.556 1.378 1.182 

Std. Dev. 0.162 0.376 0.346 0.057 

Minimum 1.031 1.000 1.118 1.067 

Maximum 1.710 2.690 2.599 1.514 

 
These results show the sensitivity of the stochastic frontier benchmarking methods in 
our sample. This is not particularly encouraging since the results cannot be considered 
as reliable, especially if they are to be applied in the price-regulation process. Therefore, 
the direct use of inefficiency estimates in the regulation of water distribution utilities 
may be misleading. Nevertheless, some lack of robustness of inefficiency estimates is 
expected since the various models employ different assumptions regarding cost 
inefficiency and heterogeneity. We thus cannot expect the results to be completely 
invariant to these different assumptions.  
 
Table 6: Correlation between inefficiency scores (Pearson correlation coefficients) 
 

R Model I 
Pooled (ML) 

Model II 
RE (GLS) 

Model III 
RE (ML) 

Model IV 
TFE (ML) 

Model I 1 0.667* 0.614* 0.399* 

Model II  1 0.932* 0.023 

Model III   1 0.027 

Model IV    1 

 
Note: * – significant at 0.1% (two-sided significance level) 

 
Whether time-invariant effects belong to unobserved heterogeneity or cost inefficiency 
is debatable. If there is some time-invariant inefficiency, the inefficiency scores 
obtained by TFE model could be underestimated. On the other hand, if there is some 

                                                 
17 Similar conclusion can be found in Farsi, Filippini and Greene (2005) and Farsi, Filippini and Kuenzle 
(2005, 2006) where the efficiency estimates of the true random effects model are compared with 
conventional panel data stochastic frontier models.  
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unobserved time-invariant heterogeneity present the other panel data models treat it as 
cost inefficiency and thus tend to overestimate it. How we handle time-invariant effects 
obviously has a large influence on the findings. Ultimately, firm-specific heterogeneity 
and inefficiency both might contain time-invariant and time-varying elements and there 
is no perfect way to disentangle them based on the observed data (Greene, 2005a, b). If 
one wishes to be on the safe side, then the conclusion would be that the TFE sets the 
lower bound, whereas the two RE models set the upper bound for the cost inefficiency 
of Slovenian water distribution utilities. 
 
Estimated economies of output density, customer density and economies of scale for 
Slovenian water distribution utilities can be found in Table 7. The respective measures 
for all four models are calculated using (8), (9) and (10), where the input prices are held 
fixed at their median values. With respect to the amount of water distributed, the 
number of customers, and the size of service area three types of representative 
companies are chosen – a first-quartile company (small companies), a median company 
(medium-sized companies) and a third-quartile company (large companies). Here the 
results from different models as reported in Table 7 demonstrate far more consistency 
than in the case of cost-inefficiency scores. All results follow the same pattern and lead 
us to the same conclusions.  
 
Table 7: Economies of output density (EOD), customer density (ECD) and scale (ES) 
 

Econonomies Quartile Model I 
Pooled (ML) 

Model II 
RE (GLS) 

Model III 
RE (ML) 

Model IV 
TFE (ML) 

 1st Quartile 3.099 3.485 3.500 4.605 

EOD Median 3.042 3.455 3.448 3.874 

 3rd Quartile 1.846 2.509 2.689 2.029 

 1st Quartile 1.214 1.222 1.277 1.109 

ECD Median 1.286 1.316 1.344 1.313 

 3rd Quartile 1.182 1.265 1.263 1.208 

 1st Quartile 1.289 1.121 1.157 1.311 

ES Median 1.030 1.040 1.039 1.088 

 3rd Quartile 0.816 0.933 0.925 0.846 

 
Economies of output density (EOD) are present for all three types of companies with 
respect to size. Since EOD > 1, a 1% increase in cost (C) is associated with a more than 
1% increase in the amount of water distributed (Q), holding the number of customers 
(CU) and the size of the service area (AS) constant. It would therefore be beneficial for 
water companies if they managed to distribute larger amounts of output to the existing 
customers within their service areas. The economies of customer density (ECD) are also 
confirmed for all three different types of companies. A 1% proportional increase in both 
the output and the number of customers leads to an increase in cost by less than 1% 
(ECD > 1), holding the area size constant. Thus, it would be beneficial for companies if 
the existing service areas were to become more densely populated or if the companies 
could manage to get new customers. The economies of scale (ES) equal the inverse of 
the percentage change in costs when the output, number of customers and area size 
increase by 1%. The results show that substantial economies of scale are present in 
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smaller companies (ES > 1). It would be thus rational for the smaller companies to 
expand their service area or, if possible, for adjacent companies to merge.18 Economies 
of scale are also present in medium-sized companies, where they are close to one. This 
is also an indication that the optimal size of Slovenian water distribution utilities is 
relatively close to the median point of the sample. The median company corresponds to 
a company with an annual water supply of 1.17 million cubic metres, 5,168 customers 
and 264 square kilometres of service area size. On the other hand, diseconomies of scale 
prevail in large companies (Es < 1). Apparently, the largest water distribution utilities in 
the sample have already exhausted their potential for cost savings resulting from 
economies of scale and their operations are found to be on the interval where average 
costs already start to rise.  
 
6. Conclusions 
 
In the study several different stochastic frontier methods were considered to estimate 
cost inefficiency of Slovenian water distribution utilities over the 1997-2003 period. 
The results indicate that Slovenian water distribution utilities would have to 
significantly decrease costs in order to become efficient. Nevertheless, the inefficiency 
scores obtained from the different methods are not found to be robust in their levels and 
rankings of the companies. A possible explanation for this lack of robustness can be 
found in the different ability of stochastic frontier methods to account for unobservable 
heterogeneity. From the methodological point of view the empirical results show that 
conventional random effects models tend to overestimate cost inefficiency since the 
inefficiency estimates also contain unobserved heterogeneity. The true fixed effects 
model recently proposed by Greene (2005a, b) seems to be able to distinguish between 
unobserved heterogeneity and inefficiency but it may underestimate the inefficiency 
since all time-invariant effects are treated as unobserved heterogeneity. Therefore, the 
problem of separating unobserved heterogeneity from inefficiency is not fully resolved. 
From the policy and regulatory point of view, the lack of robustness of the results 
suggests that a mechanical use of SFA inefficiency scores results in a price-setting 
process is not recommended. Benchmarking results should only be used as a starting 
point for providing information about the range in which the inefficiency scores can be 
located. Finally, with respect to economies of scale and density the results are more 
consistent. The estimated economies of scale close to one for the sample median point 
indicate that medium-sized utilities closely correspond to the optimal size of water 
distribution utilities in Slovenia. Large utilities are found to operate at levels where 
diseconomies of scale are already present, while smaller utilities should be interested in 
expanding their service areas since this would lead to a decrease in average operating 
costs. Economies of output density and customer density are confirmed for all three 
different types of utilities with respect to the size of the operation. Therefore, franchised 
monopolies, rather than side-by-side competition, seem to be the most efficient form of 
production organization in the water distribution industry. 
 

                                                 
18 Of course, to come up with realistic estimates of potential gains from merging the companies, it would 
be necessary to look in more detail geographical position of the companies and areas they operate and to 
analyse whether it would be feasible to connect two or more water distribution networks. This analysis 
goes beyond the scope of this study. 
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